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Introduction
• Traditional power distribution voltage control use

decentralized controls of capacitor banks, on-load
tap changers (OLTCs) and smart inverters.

• Physics-based methods for optimization of voltage
control require accurate system models.

• Reinforcement learning (RL) is efficient in automated
systems where human expertise is not readily
available and learns through environmental
experiences to make optimal decisions

• Deep learning enabled by artificial neural networks
(ANNs) greatly enhanced the RL performance by
improving feature extraction and data generalization

• Deep reinforcement learning (DRL) agents can
readily learn an optimal actions policy by assessing
state-action pairs within an operational environment.

• Current DRL-based autonomous voltage control
(AVC) methods use deep Q-learning (DQN) and
deep deterministic policy gradient (DDPG) RL but
converge very slowly.

• Newer approaches import target Q network and
random exploration values during training to achieve
faster convergence, but the average reward and
controlled voltage variance can be high due to q-
value overestimations.
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methodology to modulate reactive power injection of  
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Abstract: To meet the challenges of low-carbon power generation, distributed energy resources (DERs) such as energy storage systems, solar and wind power generators are now widely integrated into the power
grid. Because of the autonomous nature of DERs, ensuring properly regulated output voltages of the individual sources to the grid distribution system poses a technical challenge to grid operators. Stochastic,
model-free voltage regulations methods such as deep reinforcement learning (DRL) have proven effective in the regulation of DER output voltages; however, deriving an optimal voltage control policy using DRL
over a large state space has a large computational time complexity. In this paper we illustrate a computationally efficient method for deriving an optimal voltage control policy using a parallelized DRL ensemble.
Additionally, we illustrate the resiliency of the control ensemble when random noise is introduced by a cyber adversary.

Case Study
• IEEE 13-bus test feeder with two energy storage

systems (ESSs), with load fluctuations

• Intelligent agents perform control of the ESSs to
minimize voltage deviations and energy losses

• DRL agents must also mitigate the effects of an
adversary that also manipulates setpoints of ESS

DRL Voltage Control
• 2 agents DPG & DQL compose a stacked ensemble.

• Adversary randomly injects values into the inverters. 

• The two agents/learners derive an optimal policy 
using stochastic RL to select their control actions.

• DQL & DPG agents utilize deep neural networks to
derive and store AVC policies

• Both agents consists of deep ANNs that output a
vector of actions stored in separate AVC policies

• DPG & DQL ensemble complement one another

• DQL predicts future rewards using a value function
DPG efficiently observes ANN gradients

• Periodically the DPG & DQL AVC policies are
combined into a global optimal policy

• The aggregate AVC policy is used to train a separate
deep feed-forward neural net (DFNN) that predicts
reward values given newly observed voltages

• Predicting reward values requires less computation
using the DFNN than the iterative convergence
processes of DQL & DPG agents

• To ensure that the DFNN is trained sufficiently, the
DQL & DPG agents run offline in a secondary
mirrored simulation environment in parallel with the
DFNN and periodically the most recent optimal
aggregated policy is used to re-train the DFNN.

• The training process employs a two-layer
autoencoding neural net, with its first encoding layer
performing linear transformations from input
dimension elements to a lower output dimension to
ensure a noise-free training dataset.

• The second layer decodes the lower dimension
encoding using a linear transformation as well with
the output being of the same size as the original
input dimension and a sigmoid output layer
activation function.
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Conclusion
• DRL ensembles provide stable voltage control for

storage-connected inverters

• Stable voltage control is achievable in the presence
of noise and cyber adversaries

• By aggregating the control policies of a DRL
ensemble and a maximum entropy adversary, it is
possible to achieve operational resiliency.

• This solution can be scaled to larger multi-agent
control systems using high-performance computing.
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Fig. 1. Simulated voltage profile of  a distribution feeder (a) during normal 

operation, and (b) under a coordinated attack on voltage control devices.

Simulated Grid Environment
• OpenDSS, an electric grid distribution system

simulator was used to research the effectiveness and
efficiency of the devised AVC algorithm.

• A simulated attack on voltage regulators could cause
all voltages in the system to go well below the
minimum limit of 0.95 p.u., and possibly causing
some equipment to malfunction or not work at all.

• DER reward function:
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• Energy storage represented by WECC regc a model

Fig. 2. Ensemble voltage control system.

Fig. 3. Voltage control pre-trained neural network.

Fig. 4. Neural network controller rewards as simulation progresses.

Fig. 5. Neural network- controlled mean voltage (p.u.).
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Fig. 6. Mean reward over 5000 training episodes using DPG and DQL. 

(a) Mean reward DPG (horzontal axis 5000 episodes/8)

(b) Mean reward DQL (horz. axis 5000 episodes/4) 


